Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts - pp905 - 912
Hong Xu, Jia Gao & Donglin Jiang
Covalent organic frameworks (COFs) feature periodic layers and ordered pores that make them promising for applications in catalysis, but they typically suffer from poor stability. Now, adding methoxy groups to its pore walls has been shown to strengthen a COF's interlayer interactions, resulting in a stable, crystalline, porous material that can be further converted into chiral organocatalysts.
Abstract
The periodic layers and ordered nanochannels of covalent organic frameworks (COFs) make these materials viable open catalytic nanoreactors, but their low stability has precluded their practical implementation. Here we report the synthesis of a crystalline porous COF that is stable against water, strong acids and strong bases, and we demonstrate its utility as a material platform for structural design and functional development. We endowed a crystalline and porous imine-based COF with stability by incorporating methoxy groups into its pore walls to reinforce interlayer interactions. We subsequently converted the resulting achiral material into two distinct chiral organocatalysts, with the high crystallinity and porosity retained, by appending chiral centres and catalytically active sites on its channel walls. The COFs thus prepared combine catalytic activity, enantioselectivity and recyclability, which are attractive in heterogeneous organocatalysis, and were shown to promote asymmetric C–C bond formation in water under ambient conditions.
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.