Monday, September 11, 2017

Catalytic NH3 Synthesis using N2/H2 at Molecular Transition Metal Complexes: Concepts for Lead Structure Determination using Computational Chemistry





Abstract

While industrial NH3 synthesis based on the Haber–Bosch-process was invented more than a century ago, there is still no molecular catalyst available which reduces N2 in the reaction system N2/H2 to NH3. As the many efforts of experimentally working research groups to develop a molecular catalyst for NH3 synthesis from N2/H2 have led to a variety of stoichiometric reductions it seems justified to undertake the attempt of systematizing the various approaches of how the N2 molecule might be reduced to NH3 with H2 at a transition metal complex. In this contribution therefore a variety of intuition-based concepts are presented with the intention to show how the problem can be approached. While no claim for completeness is made, these concepts intend to generate a working plan for future research. Beyond this, it is suggested that these concepts should be evaluated with regard to experimental feasibility by checking barrier heights of single reaction steps and also by computation of whole catalytic cycles employing density functional theory (DFT) calculations. This serves as a tool which extends the empirically driven search process and expands it by computed insights which can be used to rationalize the various challenges which must be met.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.