Tuesday, June 27, 2017

Catalytic Dehydrogenative C–C Coupling by a Pincer-Ligated Iridium Complex

Catalytic Dehydrogenative C–C Coupling by a Pincer-Ligated Iridium Complex

 Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
 Department of Chemistry, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
J. Am. Chem. Soc., Article ASAP
DOI: 10.1021/jacs.7b03433

Abstract

Abstract Image
The pincer-iridium fragment (iPrPCP)Ir (RPCP = κ3-2,6-C6H3(CH2PR2)2) has been found to catalyze the dehydrogenative coupling of vinyl arenes to afford predominantly
(E,E)-1,4-diaryl-1,3-butadienes. The eliminated hydrogen can undergo addition to
another molecule of vinyl arene, resulting in an overall disproportionation reaction with
1 equiv of ethyl arene formed for each equivalent of diarylbutadiene produced.
Alternatively, sacrificial hydrogen acceptors (e.g., tert-butylethylene) can be added to
 the solution for this purpose. Diarylbutadienes are isolated in moderate to good yields,
up to ca. 90% based on the disproportionation reaction. The results of DFT calculations
and experiments with substituted styrenes indicate that the coupling proceeds via
double C–H addition of a styrene molecule, at β-vinyl and ortho-aryl positions,
to give an iridium(III) metalloindene intermediate; this intermediate then adds a
β-vinyl C–H bond of a second styrene molecule before reductively eliminating product.
 Several metalloindene complexes have been isolated and crystallographically
characterized. In accord with the proposed mechanism, substitution at the ortho-aryl
positions of the styrene precludes dehydrogenative homocoupling. In the case of 2,4,6-trimethylstyrene, dehydrogenative coupling of β-vinyl and ortho-methyl C–H bonds
affords dimethylindene, demonstrating that the dehydrogenative coupling is not
 limited to C(sp2)–H bonds.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.